일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- python visualization
- Google Analytics
- 독후감
- 텐서플로
- tensorflow
- Visualization
- Pandas
- 월간결산
- MATLAB
- 딥러닝
- Ga
- 시각화
- MySQL
- matplotlib
- 파이썬
- 리눅스
- Python
- 블로그
- Linux
- Tistory
- 서평단
- 통계학
- 한빛미디어
- Blog
- 한빛미디어서평단
- 서평
- SQL
- 매틀랩
- 티스토리
- 파이썬 시각화
- Today
- Total
목록파이썬 (184)
pbj0812의 코딩 일기
0. 목표 - table 을 사용하여 그래프와 테이블을 같이 그리기 1. 실습 1) library 호출 import pandas as pd import numpy as np import matplotlib.pyplot as plt 2) 데이터 생성 df = pd.DataFrame( {'A' : [1, 2, 3, 4, 5], 'B' : [10, 20, 30, 40, 50], 'C' : [13, 14, 65, 43, 13]}, index = ['a', 'b', 'c', 'd', 'e'] ) 3) 변수 설정 cell_text = df.values colors = plt.cm.BuPu(np.linspace(0, 0.5, len(df.index))) columns = list(df.columns) rows = l..
0. 목표 - floweaver 를 이용한 sankey 그래프 그리기 1. 실습 1) library 설치 - chrome 에서 실습할 것, safari 에서는 위젯 표출 시 에러 발생 !pip install ipysankeywidget !pip install floweaver 2) 데이터 생성 - source : 어디에서 - target : 어디로 - type : 무엇을 - value : 얼마만큼 보내는가 flows = pd.DataFrame({ 'source' : ['A', 'B', 'A', 'B', 'A', 'C', 'B', 'D', 'A', 'A'], 'target' : ['a1', 'a1', 'a2', 'a1', 'a3', 'a5', 'a4', 'a2', 'a3', 'a3'], 'type' : [..
0. 목표 - 정규분포 그래프 그리기 1. 실습 1) library 호출 import numpy as np import matplotlib.pyplot as plt import math 2) 데이터 생성 - 평균 10, 표준편차 4, 데이터의 개수 10 만 개 data = np.random.normal(10, 4, 100000) 3) 정렬 data = sorted(data) 4) 평균 - 9.991368120797462 data_mean = sum(data) / len(data) 5) 표준편차, 분산 - 표준편차 4.013488145962863, 분산 16.10808709778442 sd = 0 for i in data: sd += (i - data_mean) ** 2 sd = math.sqrt(sd /..
0. 목표 - fill_between 을 이용한 신뢰구간을 포함한 lineplot 구현하기 1. seaborn 의 lineplot import seaborn as sns flights = sns.load_dataset("flights") sns.lineplot(data=flights, x="year", y="passengers") 2. 구현하기 0) library 호출 import seaborn as sns import matplotlib.pyplot as plt import math 1) 데이터 확인 flights.head() 2) 변수 생성 - flights_mean : 연도별 탑승자 평균 - flights_year : 연도 - flights_len : 연도별 데이터 길이 flights_mean = ..
0. 목표 - interpolate 로 violinplot 구현하기 1. 실습 1) library 호출 import seaborn as sns import matplotlib.pyplot as plt import pandas as pd import matplotlib.patches as patches from scipy.interpolate import interp1d import numpy as np 2) 데이터 로드 tips = sns.load_dataset("tips") 3) 구간별 그룹화 bins = list(range(-5, 65, 5)) tips['level'] = pd.cut(tips['total_bill'], bins, labels=bins[:-1]) df = tips[['total_bil..
0. 목표 - add_patch 를 이용한 violinplot 구현하기 1. seaborn 의 violinplot import seaborn as sns tips = sns.load_dataset("tips") sns.violinplot(y="total_bill", data=tips) 2. 구현하기 1) library 호출 import matplotlib.pyplot as plt import pandas as pd import matplotlib.patches as patches 2) 구간 확보 - [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55] bins = list(range(0, 60, 5)) 3) 구간 적용 tips['level'] = pd.cut(tips['to..
0. 목표 - 상자 그림(box plot) 구현하기 1. Seaborn 의 box plot 예제 import seaborn as sns tips = sns.load_dataset("tips") ax = sns.boxplot(y=tips["total_bill"]) 2. 실습 1) x 데이터 추가 - 추후 x 좌표로 사용 tips['x'] = 1 2) 정렬 t = sorted(list(tips['total_bill'])) 3) 분위수 계산 - 13.28, 17.78, 24.08 q1_index = int(len(t) * 0.25) q2_index = int(len(t) * 0.5) q3_index = int(len(t) * 0.75) q1 = t[q1_index - 1] q2 = t[q2_index - 1]..
0. 목표 - matplotlib 으로 FacetGrid 구현하기 1. FacetGrid 예제 import seaborn as sns tips = sns.load_dataset("tips") g = sns.FacetGrid(tips, col="sex", row="time", margin_titles=True, despine=False) g.map_dataframe(sns.scatterplot, x="total_bill", y="tip") g.set_axis_labels("Total bill", "Tip") g.fig.subplots_adjust(wspace=0, hspace=0) 2. 실습 1) library 호출 import matplotlib.pyplot as plt 2) 함수 작성 (1) 도화지 분..
0. 목표 - TextArea 를 이용한 나만의 범례 만들기 1. 실습 1) library 호출 import matplotlib.pyplot as plt import matplotlib.image as mpimg from matplotlib.offsetbox import OffsetImage, AnnotationBbox, TextArea 2) 데이터 생성 - x : x 좌표, y : y 좌표, z : 크기 x = [1, 4, 5, 6, 8] y = [8, 3, 4, 8, 2] z = [7, 2, 3, 4, 5] 3) 카테고리 분류 - 3 미만, 5 미만, 5 이상 def category(x): if x < 3: return 2 elif x < 5: return 4 else: return 6 z2 = []..
0. 목표 - offsetbox 를 이용한 피카츄(이미지) 산점도 그리기 1. 실습 1) library 호출 import matplotlib.pyplot as plt import matplotlib.image as mpimg from matplotlib.offsetbox import OffsetImage, AnnotationBbox 2) 데이터 생성 - x : x 좌표 - y : y 좌표 - z : 크기 x = [3, 8, 5, 9, 4] y = [8, 3, 4, 8, 2] z = [7, 2, 3, 4, 5] 3) 그래프 그리기 (1) 도화지 생성 (2) 피카츄 그림 호출 (3) 반복문을 이용해 x, y, z 데이터를 하나씩 들고오면서 그림 생성 # 1 fig, ax = plt.subplots() fig..