일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 매틀랩
- 시각화
- 한빛미디어서평단
- 서평
- matplotlib
- 블로그
- Pandas
- tensorflow
- Google Analytics
- MySQL
- 서평단
- 딥러닝
- 월간결산
- Visualization
- 통계학
- 티스토리
- Blog
- 텐서플로
- 파이썬
- SQL
- python visualization
- 독후감
- Linux
- 리눅스
- Tistory
- 파이썬 시각화
- 한빛미디어
- Ga
- MATLAB
- Python
- Today
- Total
목록Visualization (21)
pbj0812의 코딩 일기
0. 목표 - barh 그래프에서 특정 bar만 다른 색으로 칠하기 1. 실습 1) library 호출 import pandas as pd import matplotlib.pyplot as plt 2) 데이터 생성 df = pd.DataFrame({'catn' : ['a', 'b', 'c', 'd', 'e'], '2020' : [1, 2, 3, 4, 5], '2021' : [5, 4, 3, 2, 1], '2022' : [3, 5, 1, 5, 2]}) df_copy = df.copy() 3) 그림 제작에 사용될 필드명 저장 column_list = df_copy.columns[1:] 4) 그림 그리기 # 판 깔기 fig, ax = plt.subplots(len(column_list), 1) # 피규어 크기..
0. 목표 - 정해진 구역에 패턴 넣기 1. 실습 1) library 호출 import matplotlib.pyplot as plt import pandas as pd from matplotlib.patches import Ellipse, Polygon 2) 데이터 생성 x = [1, 2, 3, 4, 5, 6] a = [1, 2, 3, 7, 2, 2] b = [3, 5, 3, 5, 67, 3] c = [7, 3, 8, 2, 56, 3] df = pd.DataFrame({'x' : x, 'a' : a, 'b' : b, 'c' : c}) 3) 그림 그리기 # 칼럼명 갯수 확인 len_df = len(df.columns) - 1 # 판 그리기 fig, ax = plt.subplots(3, 1) # 그림 크기 ..
0. 목표 - 국내 프로야구 역대 관중 수 그리기 1. 실습 1) library 호출 import matplotlib.pyplot as plt import matplotlib import pandas as pd from matplotlib import rc rc('font', family='AppleGothic') plt.rcParams['axes.unicode_minus'] = False from matplotlib.patches import Ellipse, Polygon 2) 데이터 만들기 - crowdf2 는 그림자 효과를 위함 year = [i for i in range(1999, 2019, 1)] year2 = [] for i in year: year2.append(str(i)[2:]) crow..
0. 목표 - 보조 눈금 그리기 1. 실습 1) library 호출 import matplotlib.pyplot as plt import numpy as np 2) 데이터 생성 x = [1, 2, 3] y = [1, 2, 3] 3) 그림 그리기 fig, ax = plt.subplots() ax.plot(x, y) plt.show() 4) 라벨 값 받기 a = ax.get_yticklabels() 5) linspace 를 이용해 사이에 넣어줄 값 생성 - 0.05 간격 b = np.linspace(0.75, 3.25, int((3.25 - 0.75) / 0.05) + 1) 6) 그림 그리기 fig, ax = plt.subplots() ax.plot(x, y) ax.set_yticks(b, minor = T..
0. 목표 - matplotlib 으로 seaborn scatterplot 구현하기 1. 실습 1) library 호출 import pandas as pd import matplotlib.pyplot as plt import seaborn as sns 2) 데이터 호출 df = sns.load_dataset('tips') 3) seaborn 으로 그리기 sns.scatterplot(x = 'total_bill', y = 'tip', hue = 'size', style = 'sex', palette = 'Blues', data = df) 4) matplotlib 으로 그리기 (1) 색깔만 바꾸기 fig, ax = plt.subplots() scatter = ax.scatter(df['total_bill']..
0. 목표 - table 을 사용하여 그래프와 테이블을 같이 그리기 1. 실습 1) library 호출 import pandas as pd import numpy as np import matplotlib.pyplot as plt 2) 데이터 생성 df = pd.DataFrame( {'A' : [1, 2, 3, 4, 5], 'B' : [10, 20, 30, 40, 50], 'C' : [13, 14, 65, 43, 13]}, index = ['a', 'b', 'c', 'd', 'e'] ) 3) 변수 설정 cell_text = df.values colors = plt.cm.BuPu(np.linspace(0, 0.5, len(df.index))) columns = list(df.columns) rows = l..
0. 목표 - offsetbox 를 이용한 피카츄(이미지) 산점도 그리기 1. 실습 1) library 호출 import matplotlib.pyplot as plt import matplotlib.image as mpimg from matplotlib.offsetbox import OffsetImage, AnnotationBbox 2) 데이터 생성 - x : x 좌표 - y : y 좌표 - z : 크기 x = [3, 8, 5, 9, 4] y = [8, 3, 4, 8, 2] z = [7, 2, 3, 4, 5] 3) 그래프 그리기 (1) 도화지 생성 (2) 피카츄 그림 호출 (3) 반복문을 이용해 x, y, z 데이터를 하나씩 들고오면서 그림 생성 # 1 fig, ax = plt.subplots() fig..
0. 목표 - matplotlib 의 barh 로 분수 표현하기 1. 실습하기 1) library 호출 import matplotlib.pyplot as plt 2) 함수 제작 * 분자와 분모에는 정수 형태(분모 : 자연수, 분자 : 정수)만 삽입 가능 (1) a 에는 각 파트별 크기(1 / n), b 에는 분자의 절대값, c 에는 b 를 제외한 나머지의. 값 (2) 피규어 생성 (3) 분자가 0 이 아니면 반복문을 돌면서 b 의 크기만큼 빨간 바를 누적하여 그리고 이후 c 의 크기만큼 하얀색 바를 누적해서 그림 (4) 분자가 0 이면 c 의 크기만큼 하얀색 바를 누적해서 그림 (5) 분자가 0 보다 작은 경우와 아닌 경우를 나눠서 각 바마다 text 로 표시 (6) xlabel 표시 def fracti..
0. 목표 - subplots 를 이용한 y 축이 두 개인 그래프(plotyy) 그리기 1. 실습 1) matplotlib 으로 그리기 (1) library 호출 import matplotlib.pyplot as plt (2) 데이터 생성 x1 = [1, 2, 3, 4, 5] y1 = [1, 2, 3, 4, 5] x2 = [1, 2, 3, 4, 5] y2 = [1, 10, 50, 100, 200] (3) subplots 생성 fig, axe1 = plt.subplots() (4) ax 복사 axe2 = axe1.twinx() (5) 그래프 그리기 c1 = axe1.plot(x1, y1, color = 'r') c2 = axe2.plot(x2, y2, color = 'b') axe1.set_ylabel('..
0. 목차 및 내용 1) Hello, Seaborn - notebook 설명, csv 읽기, lineplot plt.figure(figsize=(16,6)) sns.lineplot(data=fifa_data) 2) Line Charts - title, xlabel, label plt.figure(figsize=(14,6)) plt.title("Daily Global Streams of Popular Songs in 2017-2018") sns.lineplot(data=spotify_data['Shape of You'], label="Shape of You") sns.lineplot(data=spotify_data['Despacito'], label="Despacito") plt.xlabel("Date")..