일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 한빛미디어서평단
- Python
- Google Analytics
- 딥러닝
- Blog
- 매틀랩
- 서평
- 텐서플로
- python visualization
- SQL
- Tistory
- Linux
- 리눅스
- Pandas
- 통계학
- Ga
- tensorflow
- 서평단
- 블로그
- 티스토리
- MATLAB
- MySQL
- 월간결산
- 독후감
- 파이썬 시각화
- matplotlib
- 파이썬
- Visualization
- 시각화
- 한빛미디어
- Today
- Total
목록머신러닝 (12)
pbj0812의 코딩 일기
"한빛미디어 활동을 위해서 책을 제공받아 작성된 서평입니다." 0. 도서 정보 1) 도서 명 : 금융 전략을 위한 머신러닝 2) 저자 : 하리옴 탓샛, 사힐 푸리, 브래드 루카보 3) 링크 1. 서평 - 이 책은 제목만 봐도 알 수 있듯이 요즘 시대를 살고 있는 사람이라면 관심이 있을 금융에 머신러닝을 어떻게 접목시키는 지 알려주는 책이다. 첫 부분의 도입은 어느 머신러닝 도서와 마찬가지로 파이썬을 써야 하는 이유, 지도 학습 / 비지도 학습의 차이, 회귀 / 분류에 대한 차이를 알려준다. 이후엔, 데이터 처리, 머신러닝, 금융에 대한 접목까지 순서대로 알려주는 방식으로 소개되어 있다. 개인적으로 맘에 드는 방식은 어느정도 코드를 잘라서 설명해 주는 것이다. 어떤 책들을 보면 수 페이지에 달하는 코드를 ..
"한빛미디어 활동을 위해서 책을 제공받아 작성된 서평입니다." 0. 도서 정보 - 도서명 : 살아 움직이는 머신러닝 파이프라인 설계 - 저자 : 하네스 하프케, 캐서린 넬슨 - 링크 1. 후기 - 딥러닝/머신러닝이 뜨기 시작하면서 관련된 강의나 서적들이 굉장히 많이 나왔었지만, 그것을 밑에서 받쳐주는 파이프라인에 관련된 책은 찾기가 쉽지 않았다. 이 책은 그런 책을 찾고 있는 분들에게는 단비같은 서적이 될 것 이라고 본다. 파이프라인 단계에 대한 설명부터 시작하여 각 단계에 대한 설명 및 관련된 코드, 그리고 주의해야 할 점 등도 기술했다. 그렇기에 상당한 양의 정보들이 뭉쳐져 있다고 봐도 과언이 아니다. 하지만, 그렇기 때문에 각 부분에 대한 설명은 조금 아쉬울수도 있다. 예를 들면 자동화를 도와주는 ..
자세한 정보를 얻고 싶으시면 pycaret tutorial을 참조하시기 바랍니다. 0. 목표 - pycaret tutorial 따라하기 1. 실습 1) 설치 !pip install pycaret !pip install shap #interpret_model 사용시 필요 2) 데이터 불러오기 from pycaret.datasets import get_data diabetes = get_data('diabetes') 3) setup - 학습 데이터가 무엇인지, 목표 클래스는 무엇인지 설정 - 엔터 한번 입력해야 함 from pycaret.classification import * data = setup(diabetes, target = 'Class variable') 4) 모델 비교 - 예시에는 xgboos..
0. 목표 - KMeans를 통한 자동 편 가르기 1. 실습 1) 데이터 생성 import numpy as np x = np.linspace(0, 5, 6) y = np.linspace(0, 100, 101) xx, yy = np.meshgrid(x, y) xxx = np.reshape(xx, (-1, )) yyy = np.reshape(yy, (-1, )) x2 = np.linspace(15, 20, 6) y2 = np.linspace(0, 100, 101) xx2, yy2 = np.meshgrid(x2, y2) xxx2 = np.reshape(xx2, (-1, )) yyy2 = np.reshape(yy2, (-1, )) import pandas as pd df = pd.DataFrame({'x' : ..
0. 목표 - KNN 으로 편가르기 1. 실습 1) 데이터 생성 - 두 팀 생성 import numpy as np x = np.linspace(0, 5, 6) y = np.linspace(0, 100, 101) xx, yy = np.meshgrid(x, y) xxx = np.reshape(xx, (-1, )) yyy = np.reshape(yy, (-1, )) x2 = np.linspace(15, 20, 6) y2 = np.linspace(0, 100, 101) xx2, yy2 = np.meshgrid(x2, y2) xxx2 = np.reshape(xx2, (-1, )) yyy2 = np.reshape(yy2, (-1, )) 2) 데이터 프레임화 import pandas as pd df = pd.Data..
0. 목표 - XGBoost 를 이용한 집값 예측 1. 실습 1) 데이터 생성 - randomGenerator : 데이터 길이, 최소값, 최대값을 입력하면 주어진 길이만큼 최소값, 최대값 범위에서 랜덤한 정수로 채워줌 - root, yard, bathroom, livingroom, room 변수 생성 - price에는 각 변수에 원하는 값을 매겨서 합산(정확한 가중치 적용) import pandas as pd import random def randomGenerator(num_len, num_min, num_max): result = [] for i in range(num_len): result.append(random.randint(num_min, num_max)) return result roof =..
0. 목표 - RandomForest 를 이용한 집값 예측 1. 실습 1) 데이터 생성 - randomGenerator : 데이터 길이, 최소값, 최대값을 입력하면 주어진 길이만큼 최소값, 최대값 범위에서 랜덤한 정수로 채워줌 - root, yard, bathroom, livingroom, room 변수 생성 - price에는 각 변수에 원하는 값을 매겨서 합산(정확한 가중치 적용) import pandas as pd import random def randomGenerator(num_len, num_min, num_max): result = [] for i in range(num_len): result.append(random.randint(num_min, num_max)) return result r..
0. 목차 및 내용 1) Introduction - 이전 과정(Intro to Machine Learning) 에 대한 복습 및 앞으로의 과정 소개 2) Missing Values - 결측값에 관한 처리 방안(sklearn.impute 의 SimpleImputer 소개) (1) 칼럼 삭제 (2) 다른 숫자로 채우기 (3) 라벨링? 을 통한 표기 3) Categorical Variables - 카테고리 항목에 대한 라벨링 방안 및 학습 과정 소개(sklearn.preprocessing 의 LabelEncoder, OneHotEncoder 소개) (1) 칼럼 삭제 (2) 다른 숫자로 라벨링 (3) 원-핫 인코딩 4) Pipelines - 데이터 전처리부터 모델구성까지 도와주는 pipeline 에 대한 소개 ..
0. 목차 - Machine Learning 입문 과정으로 Pandas 로 데이터를 읽고 전처리 하는 과정부터 시작하여, Decision Tree, Random Forest 등을 통해 모델을 만들고 학습하는 과정, 그리고 평가하는 방법을 배울 수 있음. - kaggle 에서 제공하는 내부 jupyter notebook 으로 진행하기에 1) How Models Work 2) Basic Data Exploration 3) Your First Machine Learning Model 4) Model Validation 5) Underfitting and Overfitting 6) Random Forest 7) Machine Learning Competitions 1. 최종 코드 # Code you have p..
0. 목표 - tensorflow.js 로 모델 학습하기 1. index2.html - 데이터는 y = 1x + 1 의 형태로 준비 - fitParam 에서 epoch 횟수 정의(1만번) - epoch 1회시 해당 RMSE 출력 - model.fit 에서 모델 학습 이후 weight 와 bias 를 출력하도록 설정 2. main.js var http = require('http'); var fs = require('fs'); var app = http.createServer(function(request,response){ var url = request.url; if(request.url == '/'){ url = '/index2.html'; } if(request.url == '/favicon.ico..