일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- Google Analytics
- Ga
- 딥러닝
- Tistory
- 시각화
- MATLAB
- 리눅스
- Visualization
- 월간결산
- tensorflow
- Python
- 블로그
- Linux
- 한빛미디어서평단
- python visualization
- 독후감
- matplotlib
- 매틀랩
- MySQL
- 파이썬
- SQL
- 한빛미디어
- Blog
- 서평단
- 통계학
- Pandas
- 서평
- 파이썬 시각화
- 텐서플로
- 티스토리
- Today
- Total
목록HeatMap (2)
pbj0812의 코딩 일기
0. 목표 - GridSpec 을 이용한 여러 그래프를 같이 그리기 1. 실습 1) library 호출 import seaborn as sns import matplotlib.pyplot as plt from matplotlib import gridspec 2) 데이터 생성 flights_long = sns.load_dataset("flights") 3) heatmap 용 데이터 flights = flights_long.pivot("month", "year", "passengers") 4) barplot 용 데이터 year_df = flights_long.groupby(by = 'year').agg({'passengers' : 'sum'}) month_df = flights_long.groupby(by ..
0. 목표 - seaborn 을 이용한 heatmap 그리기 1. 이중 group by 확인 예제 1) library 호출 import pandas as pd 2) 데이터 생성 df = pd.DataFrame({'a' : [1, 2, 3, 4, 1], 'b' : [1, 1, 1, 1, 1], 'c' : [2, 3, 5, 10, 11]}) 3) 이중 group by 를 통한 숫자 세기 df.groupby(by=['a', 'b'], as_index=False).count() 2. seaborn 을 통한 heatmap 제작 1) library 호출 import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sn..