일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 한빛미디어서평단
- Google Analytics
- matplotlib
- tensorflow
- MySQL
- 리눅스
- 파이썬
- Python
- SQL
- 서평단
- 텐서플로
- 서평
- 한빛미디어
- 월간결산
- 독후감
- 시각화
- Tistory
- 통계학
- Pandas
- 딥러닝
- Ga
- 블로그
- Visualization
- 티스토리
- Linux
- python visualization
- Blog
- 파이썬 시각화
- 매틀랩
- MATLAB
- Today
- Total
목록사이킷런 (2)
pbj0812의 코딩 일기
0. 목표 - RandomForest 를 이용한 집값 예측 1. 실습 1) 데이터 생성 - randomGenerator : 데이터 길이, 최소값, 최대값을 입력하면 주어진 길이만큼 최소값, 최대값 범위에서 랜덤한 정수로 채워줌 - root, yard, bathroom, livingroom, room 변수 생성 - price에는 각 변수에 원하는 값을 매겨서 합산(정확한 가중치 적용) import pandas as pd import random def randomGenerator(num_len, num_min, num_max): result = [] for i in range(num_len): result.append(random.randint(num_min, num_max)) return result r..
0. 목표 - PYTHON 을 통한 AUPRC 구현 및 sklearn 과 비교 1. 스크래치 실습 1) library 호출 import pandas as pd import matplotlib.pyplot as plt 2) 데이터 생성 index = [i for i in range(1, 21)] label = ['p', 'p', 'n', 'p', 'p', 'p', 'n', 'n', 'p', 'n', 'p', 'n', 'p', 'n', 'n', 'n', 'p', 'n', 'p', 'n'] probability = [0.9, 0.8, 0.7, 0.6, 0.55, 0.54, 0.53, 0.52, 0.51, 0.505, 0.4, 0.39, 0.38, 0.37, 0.36, 0.35, 0.34, 0.33, 0.3, ..