일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- 파이썬 시각화
- Blog
- Google Analytics
- MATLAB
- 월간결산
- tensorflow
- 리눅스
- 매틀랩
- Pandas
- 한빛미디어서평단
- Ga
- 독후감
- python visualization
- SQL
- 파이썬
- 서평단
- 시각화
- Tistory
- MySQL
- 딥러닝
- 텐서플로
- Linux
- 한빛미디어
- 블로그
- 통계학
- Visualization
- 티스토리
- Python
- 서평
- matplotlib
- Today
- Total
목록P-R 곡선 (3)
pbj0812의 코딩 일기
0. 목표 - PYTHON 을 통한 AUPRC 구현 및 sklearn 과 비교 1. 스크래치 실습 1) library 호출 import pandas as pd import matplotlib.pyplot as plt 2) 데이터 생성 index = [i for i in range(1, 21)] label = ['p', 'p', 'n', 'p', 'p', 'p', 'n', 'n', 'p', 'n', 'p', 'n', 'p', 'n', 'n', 'n', 'p', 'n', 'p', 'n'] probability = [0.9, 0.8, 0.7, 0.6, 0.55, 0.54, 0.53, 0.52, 0.51, 0.505, 0.4, 0.39, 0.38, 0.37, 0.36, 0.35, 0.34, 0.33, 0.3, ..
0. 목표 - PYTHON 을 통한 P-R 곡선 구현 1. 실습 1) library 호출 import pandas as pd import matplotlib.pyplot as plt 2) 데이터 생성 index = [i for i in range(1, 21)] label = ['p', 'p', 'n', 'p', 'p', 'p', 'n', 'n', 'p', 'n', 'p', 'n', 'p', 'n', 'n', 'n', 'p', 'n', 'p', 'n'] probability = [0.9, 0.8, 0.7, 0.6, 0.55, 0.54, 0.53, 0.52, 0.51, 0.505, 0.4, 0.39, 0.38, 0.37, 0.36, 0.35, 0.34, 0.33, 0.3, 0.1] 3) 데이터 프레임화 da..
0. 목표 - ROC 곡선 그리기 1. 실습 1) library 호출 import pandas as pd import matplotlib.pyplot as plt 2) 데이터 생성 index = [i for i in range(1, 21)] label = ['p', 'p', 'n', 'p', 'p', 'p', 'n', 'n', 'p', 'n', 'p', 'n', 'p', 'n', 'n', 'n', 'p', 'n', 'p', 'n'] probability = [0.9, 0.8, 0.7, 0.6, 0.55, 0.54, 0.53, 0.52, 0.51, 0.505, 0.4, 0.39, 0.38, 0.37, 0.36, 0.35, 0.34, 0.33, 0.3, 0.1] 3) 데이터 프레임화 data = pd.Dat..