일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- Python
- MySQL
- 통계학
- Pandas
- MATLAB
- SQL
- tensorflow
- 한빛미디어
- 딥러닝
- 한빛미디어서평단
- Google Analytics
- 서평
- 텐서플로
- Visualization
- Tistory
- 리눅스
- 시각화
- Linux
- Blog
- 서평단
- 월간결산
- 파이썬 시각화
- python visualization
- 매틀랩
- 티스토리
- matplotlib
- 블로그
- 독후감
- 파이썬
- Ga
- Today
- Total
목록데이터과학 (3)
pbj0812의 코딩 일기
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/dRZwxJ/btqY7pBeUuM/BSwrXvy0FD4jxYeHPyfmI1/img.png)
0. 목표 - pivot, pivot_table 문서 따라하기 1. pivot 1) library 호출 import pandas as pd 2) 데이터 생성 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) 3) - foo 를 행기준으로 bar 를 열 기준으로 baz 를 채워넣기 df.pivot(index='foo', columns='bar', values='baz') 4) - 3) 과 동일한 결과 df.pivot(index='foo', col..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/wAub4/btqNe5f8av4/pUrLg7KhvND5UwKyquRpmK/img.png)
0. 목표 - PYTHON 을 통한 P-R 곡선 구현 1. 실습 1) library 호출 import pandas as pd import matplotlib.pyplot as plt 2) 데이터 생성 index = [i for i in range(1, 21)] label = ['p', 'p', 'n', 'p', 'p', 'p', 'n', 'n', 'p', 'n', 'p', 'n', 'p', 'n', 'n', 'n', 'p', 'n', 'p', 'n'] probability = [0.9, 0.8, 0.7, 0.6, 0.55, 0.54, 0.53, 0.52, 0.51, 0.505, 0.4, 0.39, 0.38, 0.37, 0.36, 0.35, 0.34, 0.33, 0.3, 0.1] 3) 데이터 프레임화 da..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/pXQgG/btqMThgJLLO/jm1vkNi2cM4WGR9teKaAoK/img.png)
0. 목표 - ROC 곡선 그리기 1. 실습 1) library 호출 import pandas as pd import matplotlib.pyplot as plt 2) 데이터 생성 index = [i for i in range(1, 21)] label = ['p', 'p', 'n', 'p', 'p', 'p', 'n', 'n', 'p', 'n', 'p', 'n', 'p', 'n', 'n', 'n', 'p', 'n', 'p', 'n'] probability = [0.9, 0.8, 0.7, 0.6, 0.55, 0.54, 0.53, 0.52, 0.51, 0.505, 0.4, 0.39, 0.38, 0.37, 0.36, 0.35, 0.34, 0.33, 0.3, 0.1] 3) 데이터 프레임화 data = pd.Dat..